13 research outputs found

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5β€ˆΓ—β€ˆ1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1β€ˆ-β€ˆrelative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23β€ˆ848 participants were enrolled and 11β€ˆ636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62Β·1% (95% CI 41Β·0-75Β·7; 27 [0Β·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1Β·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90Β·0% (67Β·4-97Β·0; three [0Β·2%] of 1367 vs 30 [2Β·2%] of 1374; pinteraction=0Β·010). Overall vaccine efficacy across both groups was 70Β·4% (95Β·8% CI 54Β·8-80Β·6; 30 [0Β·5%] of 5807 vs 101 [1Β·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74β€ˆ341 person-months of safety follow-up (median 3Β·4 months, IQR 1Β·3-4Β·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5β€ˆΓ—β€ˆ1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1β€ˆ-β€ˆrelative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23β€ˆ848 participants were enrolled and 11β€ˆ636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62Β·1% (95% CI 41Β·0–75Β·7; 27 [0Β·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1Β·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90Β·0% (67Β·4–97Β·0; three [0Β·2%] of 1367 vs 30 [2Β·2%] of 1374; pinteraction=0Β·010). Overall vaccine efficacy across both groups was 70Β·4% (95Β·8% CI 54Β·8–80Β·6; 30 [0Β·5%] of 5807 vs 101 [1Β·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74β€ˆ341 person-months of safety follow-up (median 3Β·4 months, IQR 1Β·3–4Β·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Jornal diΓ‘rio : a estrutura narrativa no terceiro milΓͺnio : anotaçáes para uma pesquisa sobre a notΓ­cia

    No full text
    9 p.a contemporaneidade confirma velhas intuiçáes, como a do sociólogo Robert Park, sobre a construção da realidade quotidiana pela narrativa jornalística. A notícia como forma predominante dessa narrativa. Mito, imaginÑrio, ficção e realidade na produção noticiosa

    Educomunicação e Direitos Humanos: Caminhos da Sociedade MidiÑtica pelos Direitos Humanos

    No full text
    O contexto social crescentemente midiΓ‘tico tem favorecido prΓ‘ticas e reflexΓ΅es acerca da relação entre comunicação e educação, seja no campo prΓ‘tico do cotidiano, seja em açáes cientΓ­fico-culturais lideradas por diferentes instituiçáes. Mais recentemente, diversos cursos de formação de profissionais para estarem aptos Γ  exploração de recursos, metodologias e estratΓ©gias de atuação COMUNICACIONAL em diferentes Γ‘reas tΓͺm surgidos com o objetivo de atender Γ  demanda por especialistas que transitam nas interfaces da comunicação/educação. Γ‰ neste contexto que o SeminΓ‘rio Anhembi Morumbi de Comunicação e Educação foi criado em 2014 com o objetivo de colaborar para a articulação de esforΓ§os de profissionais e instituiçáes que atuam na pesquisa, no ensino e na ação social, envolvidos diretamente nas interfaces da comunicação/educação. A Universidade Anhembi Morumbi, atravΓ©s desta proposta, estabelece parceria com a ABPEducom – Associação Brasileira de Pesquisadores e Profissionais da Educomunicação, e com o NCE/USP - NΓΊcleo de Comunicação e Educação da USP, a fim de viabilizarem oportunidades para seus profissionais e a sociedade como um todo de troca de experiΓͺncias e conhecimentos, bem como uma forma de somar esforΓ§os pela atualização e formação profissional de qualidade, capaz de atender Γ s novas demandas sociais

    Direct antiviral therapy for treatment of hepatitis C: A real-world study from Brazil

    No full text
    Introduction and objectives: Direct antiviral agents (DAAs) including sofosbuvir (SOF), daclatasvir (DCV), simeprevir (SIM) and ombitasvir, paritaprevir and dasabuvir were introduced 2015 in Brazil for treatment of hepatitis C virus (HCV) infection. The aims of this study were to assess effectiveness and safety of HCV treatment with DAA in real-life world in a highly admixed population from Brazil. Materials and methods: All Brazilian reference centers for HCV treatment were invited to take part in a web-based registry, prospectively conducted by the Brazilian Society of Hepatology, to assess outcomes of HCV treatment in Brazil with DAAs. Data to be collected included demographics, disease severity and comorbidities, genotype (GT), viral load, DAA regimens, treatment side effects and sustained virological response (SVR). Results: 3939 patients (60% males, mean age 58Β Β±Β 10 years) throughout the country were evaluated. Most had advanced fibrosis or cirrhosis, GT1 and were treated with SOF/DCV or SOF/SIM. Overall SVR rates were higher than 95%. Subjects with decompensated cirrhosis, GT2 and GT3 have lower SVR rates of 85%, 90% and 91%, respectively. Cirrhosis and decompensated cirrhosis in GT1 and male sex and decompensated cirrhosis in GT3 were significantly associated with no SVR. Adverse events (AD) and serious AD occurred in 18% and 5% of those subjects, respectively, but less than 1% of patients required treatment discontinuation. Conclusion: SOF-based DAA regimens are effective and safe in the heterogeneous highly admixed Brazilian population and could remain an option for HCV treatment at least in low-income countries

    Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    No full text
    O artigo apresenta nas duas primeiras pΓ‘ginas nota de correção.Submitted by sandra infurna ([email protected]) on 2016-03-31T12:56:45Z No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-03-31T15:33:31Z (GMT) No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5)Made available in DSpace on 2016-03-31T15:33:31Z (GMT). No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5) Previous issue date: 2015Universidade Federal do Rio de Janeiro. Instituto de QuΓ­mica. Departamento de BioquΓ­mica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Simon Fraser University. Biological Sciences. Burnaby, BC, Canada.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina / Universidad Nacional del Noroeste de Buenos Aires. Centro de Bioinvestigaciones. Pergamino, Argentina.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de GenΓ©tica. Rio de Janeiro, RJ, Brasil.Universidad de la RepΓΊblica. Facultad de Ciencias. SecciΓ³n GenΓ©tica Evolutiva. Montevideo, Uruguay.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de QuΓ­mica. Departamento de BioquΓ­mica. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.University of Notre Dame. Department of Biological Sciences. Notre Dame, IN.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Estadual Paulista. Departamento de Biologia. SΓ£o Paulo, SP, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas RenΓ© Rachou. Belo Horizonte, MG, Brasil.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Institut de Recherche pour le Development. Centre National de la Recherche Scientifique. Laboratoire d`Evolution, GΓ©nome et SpΓ©ciation. Gif sur Yvette, France / UniversitΓ© Paris-Sud, Orsay, France.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.UniversitΓ© FranΓ§ois Rabelais. Centre National de la Recherche Sicentifique. Institut de Recherche sur la Biologie de l`Insect. Tours, France.UniversitΓ© Paris-Sud, Orsay, France.Universidad Nacional de La Plata. Facultad de Ciencias MΓ©dicas. Instituto de Investigaciones BioquΓ­micas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de GenΓ©tica. Rio de Janeiro, RJ, Brasil.University of Toronto. Department of Biology. Mississauga, ON, Canada.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas RenΓ© Rachou. Belo Horizonte, MG, Brasil.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de GenΓ©tica. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas RenΓ© Rachou. Belo Horizonte, MG, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de BiociΓͺncias e Biotecnologia. LaboratΓ³rio de QuΓ­mica e Função de ProteΓ­nas e PeptΓ­deos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil /Universidade Federal do Rio de Janeiro. Faculdade de FarmΓ‘cia. Departamento de Biotecnologia FarmacΓͺutica. Rio de Janeiro, RJ, Brasil.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Universidade Federal do Rio de Janeiro. Instituto de QuΓ­mica. Departamento de BioquΓ­mica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Instituto PolitΓ©cnico Nacional. Centro de InvestigaciΓ³n y de Estudios Avanzados. oDepartment of Physiology, Biophysics and Neuroscience. Mexico City, Mexico.Universidade Federal de Minas Gerais. Instituto de CiΓͺncias BiolΓ³gicas. Departamento de Fisiologia e BIoquΓ­mica. Belo Horizonte, MG, Brasil.Florida International University. Department of Biological Sciences. Miami, FL, USA.Florida International University. Department of Biological Sciences. Miami, FL, USA.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal Rural do Rio de Janeiro. Instituto de CiΓͺncias BiolΓ³gicas e da SaΓΊde. Departamento de Biologia Animal. SeropΓ©dica, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.University of Toronto. Department of Biology. Mississauga, ON, Canada.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Facultad de Ciencias MΓ©dicas. Instituto de Investigaciones BioquΓ­micas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal de Minas Gerais.Instituto de CiΓͺncias BiolΓ³gicas. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.The John Hopkins University. Bloomberg School of Public Health. Deparment of Molecular Microbiology and Immunology. Baltimore, MD, USA.Instituto Federal de Educação CiΓͺncia e Tecnologia do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Espirito Santo. NΓΊcleo de DoenΓ§as Infecciosas. VitΓ³ria, ES, Brasil.University of Illinois at Urbana–Champaign. Department of Entomology. Urbana, IL, USA.Instituto Federal de Educação CiΓͺncia e Tecnologia do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil./ Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de UberlΓ’ndia. Faculdade de Computação. Instituto de GenΓ©tica e BioquΓ­mica. LaboratΓ³rio de BioinformΓ‘tica e AnΓ‘lises Moleculares. UberlΓ’ndia, MG, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilUniversity of Santiago de Compostela. Instituto de Investigaciones Sanitarias. School of Medicine– Center for Resesarch in Molecular Medicine and Chronic Diseases. Department of Physiology. Santiago de Compostela, Spain.Virginia Polytechnic Institute. Department of Biochemistry. Blacksburg, VA, USA.University of Cambridge. Deparment of Veterinary Medicine. Cambridge, United Kingdom.Simon Fraser University. Biological Sciences. Burnaby, BC, Canada.National Institutes of Health. National Institute of Allergy and Infectious Diseases. Section of Vector Biology. Rockville, MD, USA.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de BiociΓͺncias e Biotecnologia. LaboratΓ³rio de QuΓ­mica e Função de ProteΓ­nas e PeptΓ­deos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilEuropean Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.University of Manitoba.Department of Biological Sciences. Winnipeg, MB, Canada.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil..Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.University of Geneva Medical School. Department of Genetic Medicine and Development. Geneva 1211, Switzerland / Swiss Institute of Bioinformatics. Geneva 1211, Switzerland / Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory. Cambridge, MA, USA / The Broad Institute of MIT and Harvard. Cambridge, MA, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Fundação Oswaldo Cruz. Instituto LeΓ΄nidas e Maria Deane. Grupo de Pesquisa em Ecologia de DoenΓ§as TransmissΓ­veis na AmazΓ΄nia. AM, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de UberlΓ’ndia. Faculdade de Computação. Instituto de GenΓ©tica e BioquΓ­mica. LaboratΓ³rio de BioinformΓ‘tica e AnΓ‘lises Moleculares. UberlΓ’ndia, MG, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de CiΓͺncias BiomΓ©dicas. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal de Minas Gerais. Instituto de CiΓͺncias BiolΓ³gicas. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.National Institutes of Health. National Center for Biotechnology Information. Rockville, MD, USA.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de CiΓͺncias MΓ©dicas. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de QuΓ­mica. Departamento de BioquΓ­mica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Facultad de Ciencias MΓ©dicas. Instituto de Investigaciones BioquΓ­micas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Universidade Estadual Paulista. Departamento de Biologia. SΓ£o Paulo, SP, Brasil.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de BiociΓͺncias e Biotecnologia. LaboratΓ³rio de QuΓ­mica e Função de ProteΓ­nas e PeptΓ­deos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.The John Hopkins University. Bloomberg School of Public Health. Deparment of Molecular Microbiology and Immunology. Baltimore, MD, USA.University of Notre Dame. Department of Computer Science and Engineering. Notre Dame, IN.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Universidade Federal Rural do Rio de Janeiro. Instituto de CiΓͺncias BiolΓ³gicas e da SaΓΊde. Departamento de Biologia Animal. SeropΓ©dica, RJ, Brasil.Fundação Oswaldo Cruz. Escola Nacional de SaΓΊde PΓΊblica SΓ©rgio Arouca. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. NΓΊcleo de Pesquisas EcolΓ³gicas de MacaΓ©. MacaΓ©, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de CiΓͺncias BiomΓ©dicas. Rio de Janeiro, RJ, Brasil.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de BioquΓ­mica MΓ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de CiΓͺncia e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immunedeficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods

    NΓΊcleos de Ensino da Unesp: artigos 2009

    No full text

    Genome of Rhodnius prolixus

    No full text

    An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus.

    Get PDF
    The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.Journal ArticleResearch Support, N.I.H. IntramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore